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CONTROL OF FLEXURAL WAVES ON A BEAM
USING A TUNABLE VIBRATION

NEUTRALISER

M. J. BRENNAN

Institute of Sound and Vibration Research, Southampton SO17 1BJ, England
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This paper describes an analytical and experimental investigation into the use
of a tunable vibration neutraliser to control the transmission of ¯exural
propagating waves on an in®nite Euler±Bernoulli beam. The paper investigates
the way in which the physical properties of the neutraliser a�ect the
attenuation of an incident ¯exural wave, and the frequency at which the
neutraliser should be tuned to in order to achieve the maximum attenuation of
this wave. Expressions are derived for the attenuation, the tuned frequency and
the bandwidth of the device. A simple control parameter is also proposed that
uses two signals measured with accelerometers on the beam at the base of the
neutraliser. This facilitates a compact control device. The theoretical
predictions are validated by a simple experiment.
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1. INTRODUCTION

Beams are fundamental components of many engineering structures, and the
control of vibration transmission along a beam is an important problem to be
solved in the suppression of vibration and noise. Vibration propagates in several
wave types, including ¯exural, compressional and torsional waves [1], but it is
the control of ¯exural waves that is the subject of this paper. The suppression of
¯exural waves can be achieved by passive means using an impedance mismatch,
such as a stiffness or a mass [1] or by active means, for example references [2±5].
In this paper a tunable vibration neutraliser is used. This is an adaptive-passive
means of vibration control [6], where the stiffness of the device is adjusted so
that its tuned frequency coincides with the frequency at which the propagating
waves are forced along the beam. It is thus a tunable narrow-band control
device. Such devices have been discussed by other workers, for example
references [7±9], where they have been concerned with tuning the neutraliser so
that it presents a maximum impedance at the frequency of interest. This is not
the case when controlling the transmission of ¯exural waves on a beam because
of the presence of evanescent waves at a discontinuity. If an undamped
neutraliser is tuned so that its resonance frequency coincides with the forcing
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frequency then it would ``pin'' the beam at the neutraliser position at this
frequency and consequently would only reduce the amplitude of a propagating
¯exural wave by 3 dB, as explained by Mead [10]. The tuning of a neutraliser to
control the transmission of ¯exural waves on a beam has been discussed
previously by Clark [11], and the purpose of this paper is to expand on this
work. Parameters that could be measured and used in a control system to
optimally tune the device to suppress an incident propagating wave are
investigated.
An in®nite beam rather than a ®nite beam has been chosen, because the object

of the neutraliser is to suppress propagating waves rather than in¯uence
resonant behaviour. The term vibration neutraliser rather than vibration
absorber is used in this paper to signify that the device is being used to control
vibration at a troublesome excitation frequency rather than a resonance
frequency [9]. The paper is set out as follows. Following the introduction, section
2 is devoted to the analytical study of the device, and simple expressions for the
tuned frequency and the attenuation of the propagating waves are derived. In
section 3 the tuning problem is discussed, and simulations are presented which
show that a simple measurement of displacement and rotation of the beam at the
position where the neutraliser is attached can be processed to give an indication
of the tuning/mis-tuning of the device. This tuning parameter is novel, and
although it is used in this work for an adaptive-passive device, it could also be
used in a fully active system, thus avoiding the problems of measuring the
amplitude of a propagating wave in the presence of a near-®eld wave as reported
by Elliott and Billet [12]. In section 4 a simple experiment is reported that
validates the theoretical predictions from sections 2 and 3. Finally, in section 5
some conclusions are drawn. There is also an Appendix in which some
background theory is presented and the effects of mass and hysteretic spring-like
discontinuities on an in®nite beam are discussed.

2. STEADY-STATE BEHAVIOUR

It is demonstrated in the Appendix that an undamped spring ®tted between a
rigid foundation and a beam can completely suppress a ¯exural wave on an
in®nite beam at a single frequency. If the spring contains some damping then the
¯exural wave can no longer be completely suppressed, and the damping controls
the degree of suppression. In practice it is rarely possible to ®x the spring to a
rigid foundation, and thus it has to react against an inertial mass. This
combination of a spring and a mass constitutes a dynamic system (a neutraliser)
which behaves in quite a different way than a spring alone. The aim of this
section is to investigate the dynamic behaviour of the neutraliser ®tted to the
beam and to determine the condition when the neutraliser is ``tuned'', i.e., when
a ¯exural wave propagating along the beam is suppressed.
Consider an in®nite beam with a neutraliser ®tted, which is shown as a

discontinuity in Figure 1. The complex amplitude of the incident ¯exural wave is
denoted Ai and the amplitudes of the transmitted and re¯ected waves At and Ar,
respectively. Kd represents the dynamic stiffness of the neutraliser and Kb the
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dynamic stiffness of the beam. The dynamic stiffness of the neutraliser is given
by [9]:

Kd � ÿo
2m�1� jZ�

1ÿ O2 � jZ
, �1�

where O=o/on and o2
n= k/m where k and m are the the stiffness and mass of

the neutraliser, respectively, and Z is the loss factor of the neutraliser's
hysteretically damped spring. The dynamic stiffness of a beam is given by [10]:

Kb � ÿ2EIk3f �1ÿ j�, �2�
where E and I are the Young's modulus and second moment of area of the
beam, respectively. kf is the ¯exural wave number of the beam and is given by
kf=(rA/EI )1/4o1/2=2p/l where r, A and l are the density, cross-sectional area
and ¯exural wavelength of the beam, respectively. It is shown in the Appendix
that the ratios of the transmitted and re¯ected waves to the incident wave are
given by:

At

Ai
� 4ÿ eÿ jZe

4ÿ e�1ÿ Z� ÿ je�1� Z� ,
Ar

Ai
� ÿe�1� jZ�

e�1� Z� � j�4ÿ e� , �3a; b�

where

e � Kd

EIk3f
: �4�

The condition for tuning the undamped neutraliser can be determined by
setting Z=0 in equation (1), combining this with equations (2), (3a) and (4) and
setting the modulus of At/Ai to zero. One ®nds that the tuned frequency satis®es:

O2
t � 1� mt

4
, �5�

where the subscript t denotes the tuned frequency and has been reported
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Figure 1. An in®nite Euler±Bernoulli beam with a discontinuity.
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previously by Clark [11]. m is a non-dimensional variable that relates the mass of
the neutraliser m compared to the mass in one ¯exural wavelength of the beam
and is given by:

m � mo2

EIk3f
� mkf

rA
� 2p

m

rAl
,

therefore

m � 2p
Mass of neutraliser

Mass of one wavelength of the beam
: �6�

Equation (5) can also be written as:

O2
t � 1� mn

4
O1=2

t , �7�

where mn is given by equation (6) evaluated at the natural frequency of the
neutraliser. It can be seen that there is not a simple analytical solution for the
tuned frequency, however, approximations can be made when mn is either small
or large. When mn is small Ot is close to unity, and in this situation equation (7)
becomes:

Ot1 1� mn
4

� �1=2
: �8�

When mn/44 1 then equation (7) can be approximated to:

Ot1
mn
4

� �2=3
: �9�

Equations (7±9) are plotted in Figure 2. To ®nd the regions where the
approximations are valid, one can combine equations (8) and (9) and solve
iteratively for mn/4. This results in a value of mn/4 of approximately 2�63. The
error in using the approximations is a maximum at this point and is about 14%.
Thus, when mn/4> 2�63 equation (9) can be used and when mn/4< 2�63 then
equation (8) can be used to give reasonable approximations to the tuned
frequency. It can be seen that when mn/4 is less than about 0�1 then ot1on. For
a neutraliser with small damping, i.e., m5 1, the frequency at which the
neutraliser is tuned is the same as the undamped neutraliser and is thus given by
equation (7).
From the above discussion it is evident that to suppress ¯exural waves on an

in®nite beam, a neutraliser is generally not tuned so that its natural frequency
coincides with the forcing frequency. If an undamped neutraliser is tuned to
meet this condition then it would ``pin'' the beam at this frequency and this
would only result in a 3-dB reduction in the transmitted wave as reported by
Mead [10]. The neutraliser has to present a spring-like impedance to the beam at
the tuned frequency. Because a neutraliser has a mass-like impedance below its
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natural frequency and a spring-like impedance above its natural frequency, the

excitation frequency where control is achieved will always be above the natural

frequency of the neutraliser, as can be seen from equation (5).

To determine the amplitude of the re¯ected and transmitted waves when the

neutraliser is tuned, equations (3)±(5) can be combined. Provided that Z5 1, the

modulus of the ratio of the transmitted to the incident wave is given by:

At

Ai

���� ����
tuned

�
1� mt

4

1� mt
4Z

�10�

If mt/45 1, which would generally be the case for a practical neutraliser, then the

attenuation is only a function of the ratio mt/Z, i.e:

At

Ai

���� ����
tuned

1 1

1� mt
4Z

: �11�

If the damping ratio is much smaller than the mass ratio then equation (11)

reduces to:

At

Ai

���� ����
tuned

� 4Z
mt
: �12�

Equations (11) and (12) are plotted as function of mt/Z in Figure 3. If the mass

of the neutraliser is very large compared to the size of the beam, then the

situation is very much like a spring connected to a rigid foundation as discussed
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Figure 2. Graphical representation of the approximations for the tuned frequency.
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in the Appendix. If mt is 41 and Z5 1 then equation (10) reduces to:

At

Ai

���� ����
tuned

� Z, �13�

which is the same as that derived for a hysteretic spring in the Appendix. The
ratio of the transmitted wave to the incident wave as a function of frequency are
shown in Figure 4 for different values of Z and mt=0�1. Outside this narrow
bandwidth, the neutraliser is ineffective and the reason for this can be explained
by considering the dynamic stiffness of the neutraliser. Below the natural
frequency, the dynamic stiffness of a neutraliser is mass-like and Figure A1(a)
shows that at low frequencies this has negligible effect on ¯exural waves. At high
frequencies, above the neutraliser's natural frequency, the dynamic stiffness is
spring-like. At one particular frequency the stiffness has a profound effect on the
transmitted ¯exural wave, and at frequencies greater than this the stiffness has
little effect on the transmitted wave, as can be seen by examining Figure A1(b).
In accordance with the normal convention the bandwidth of the neutraliser is

de®ned as the range of frequencies (normalised to the tuned frequency) over
which the modulus of the transmitted wave is within 3 dB of the minimum. It is
convenient to examine two different frequency regimes which roughly coincide
with those shown in Figure 2: (1) the mass of the neutraliser is much less than
the mass of one wavelength of the beam at the natural frequency of the
neutraliser (mn/45 2�63); (2) the mass of the neutraliser is much greater than the
mass of one wavelength of the beam at the natural frequency of the neutraliser
(mn/44 2�63).
In case 1 the tuned frequency is given by equation (8) and the ratio of the

amplitude of the transmitted wave to the incident wave at this frequency is given
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Figure 3. Amplitude of the transmitted ¯exural wave to the incident wave as a function of
mass to damping ratio.



TUNABLE VIBRATION NEUTRALISER 395

by equation (11). Taking the square of the modulus of equation (3a) and setting
this equal to twice the square of equation (11) and solving for O, one can ®nd
the upper and lower frequencies of the effective bandwidth of the neutraliser.
Thus,

4ÿ eÿ jZe
4ÿ e�1ÿ Z� ÿ je�1� Z�
���� ����2� 2

1

1� mt
4Z

0B@
1CA

2

, �14�

where e is given by equation (4). By solving this equation, and assuming Z5 1
and Z/mt5 1 it is found that the bandwidth is given by:

BW � o2 ÿ o1

ot
� Z: �15�

It can be seen that although the neutraliser is tuned to an off-resonant condition
such that the impedance that is presented to the beam is predominantly spring-
like, the damping in the neutraliser still controls the bandwidth as with a
neutraliser tuned to resonance.
In the Appendix, the bandwidth for a hysteretically damped spring ®tted

between ground and the beam is calculated and found to be 4Z/3. Thus, a
neutraliser that has a large mass compared to the wavelength of the beam
should, in the limit, have a similar bandwidth to this. To check this, one can
conduct an analysis similar to that above. For a large mass ratio the amplitude
of the transmitted wave at the tuned frequency is governed by the loss factor
only and is given by equation (13) rather than equation (11). Thus, in this case,
equation (14) becomes:

–5

0

0.95 1.00 1.05 1.10 1.15 1.200.90

–10

–15

–20

–30

–25

A
t

A
i

(d
B

)

Figure 4. Ratio of the transmitted ¯exural wave to the incident wave as a function of non-
dimensional frequency. Ð, mt=0�1, Z=0�01; - - - - - -, mt=0�1, Z=0�001.
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4ÿ eÿ jZe
4ÿ e�1ÿ Z� ÿ je�1� Z�
���� ����2� 2Z2: �16�

If this equation is solved to determine the upper and lower frequencies, then
provided Z5 1, one gets:

O2
1;2 � 1� mt

4
�12Z�: �17�

Now as mt is large one can make a similar approximation to that which was done
in going from equation (8) to equation (9), and hence giving:

o2

on

� �3=2

ÿ o1

on

� �3=2

� mn
2
Z: �18�

To obtain the bandwidth of the device one needs to normalise the difference in
upper and lower frequencies by the tuned rather than the natural frequency of
the neutraliser. This can be achieved by dividing equation (18) by equation (9) to
give:

o2

ot

� �3=2

ÿ o1

ot

� �3=2

� 2Z: �19�

By using a similar technique to that shown in the Appendix it is found that the
bandwidth of the device is given by:

BW � o2 ÿ o1

ot
� 4

3
Z �20�

as required. Thus, it can be seen that the bandwidth of a neutraliser used to
attenuate ¯exural propagating waves on a beam, is controlled predominantly by
the damping in the neutraliser. If the mass of the neutraliser is much smaller
than the mass of one ¯exural wavelength of the beam at the tuned frequency of
the neutraliser, then the bandwidth is equal to the neutraliser's loss factor.
However, if the mass of the neutraliser is much larger than the mass of one
wavelength of the beam at the tuned frequency of the neutraliser, then the
bandwidth is increased by a third.

3. TUNING THE NEUTRALISER

It was shown in the previous section that a neutraliser used to control ¯exural
waves on a beam is a narrow-band device. It would be useful to be able to adjust
the tuned frequency of the neutraliser if the disturbance changes its excitation
frequency with time. Previous work by Brennan et al. [13] on tunable neutralisers
that were designed to present a maximum impedance to the host structure at the
operating frequency, showed that a relatively simple algorithm could be
employed to tune the device. The control algorithm simply forced the base of the
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neutraliser and the neutraliser mass to move in quadrature. In the application
discussed in this paper, however, the phase angle required between the base of
the neutraliser and the neutraliser mass changes with the size of the neutraliser
and frequency of operation. Thus, the simple algorithm described by Brennan
et al. cannot be used. In this section ways of tuning a neutraliser to control the
transmission of ¯exural waves on a beam are explored and one method proposed
that will be discussed in some detail.
Perhaps the simplest way to control ¯exural waves on an in®nite beam is to

place a sensor which measures lateral motion of the beam some distance
downstream of the neutraliser and to tune the neutraliser until the output from
this sensor is a minimum. This method relies on the sensor output not being
contaminated by the near-®eld wave being generated by the neutraliser [12].
Because the amplitude of a near-®eld wave is negligibly small about one
wavelength from its source this would mean that the sensor would have to be
placed quite some distance from the neutraliser to control low frequency waves.
One of the advantages of using a tunable neutraliser is that it is possible to use a
compact control system local to the neutraliser. Because a control algorithm that
uses phase is very simple, the phase relationship between the measurable
quantities local to the neutraliser is investigated to see whether there is a
relationship that is invariant of the neutraliser mass.
One possible tuning parameter is the displacement of the beam where the

neutraliser is ®tted, referred to the slope of the beam at this position. Using a
®nite difference technique would only require two transducers and would be
relatively compact. The displacement at the position on the beam where the
neutraliser is attached is given by:

w�0�
Ai
� 1

1� Kd

Kb

, �21�

where the dynamic stiffnes of the neutraliser Kd, and beam Kb are given by
equations (1) and (2), respectively. Provided that the neutraliser is compact so
that it has negligible rotational inertia, the slope at this position is unaffected by
the neutraliser and is thus given by:

w 0�0�
Ai
� ÿjkf: �22�

Dividing equation (21) by equation (22) gives the ratio of the displacement to
the rotation of the beam at the point where the neutraliser is attached. It is, in
fact, better to write this in terms of the product of the displacement and the
¯exural wavenumber divided by the rotation, i.e.

kfw�0�
w 0�0� �

ÿj
1� Kd

Kb

: �23�

If the damping in the neutraliser is set to zero and the neutraliser tuned
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according to equation (5), equation (23) becomes:

kfw�0�
w 0�0�

����
tuned

� ÿ1, �24�

which is entirely real, which means there is a phase angle of 180� between the
displacement and rotation at the root of the neutraliser when it is tuned to the
forcing frequency. Thus, it appears that equation (24) could be used as a tuning
criterion. To visualise this the real and imaginary parts of equation (23) are
plotted as a function of non-dimensional frequency in Figure 5(a) for a value of
mn of 0�1. It can be seen from Figure 5(a) that although the real part of the ratio
of the displacement to the rotation could be used there could be some problems.

1.0

1.5
(a)

0.95

k
fw

(0
)/

w
'(

0)
k

fw
(0

)/
w

'(
0)

1.00

Tuned frequency

1.05 1.10 1.15 1.200.90

0.5

0.0

–0.5

–1.5

–1.0

Im

Re

1.0

1.5
(b)

0.95 1.00

Tuned frequency

1.05 1.10 1.15 1.200.90

0.5

0.0

–0.5

–1.5

–1.0

Im

Re

Figure 5. Real and imaginary parts of equation (23) plotted as a function of non-dimensional
frequency; mn=0�1. (a) An undamped neutraliser, Z=0. (b) With damping in the neutraliser,
Z=0�01.
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The real part of this function has a value of ÿ1 when the neutraliser is tuned,
but it also has a value of ÿ1 when O2=1+m/2, which means that there is
potential for the neutraliser to be mis-tuned with this control strategy. It should
be noted that the imaginary part of the function has similar characteristics to the
real part but it is zero when O2=1 and when O2=1+m/4.
To investigate the effects of damping in the neutraliser the real and imaginary

parts of equation (23) are plotted in Figure 5(b) for a loss factor of Z=0�01.
Comparing Figures 5(a) and (b), it can be seen that damping has a signi®cant
effect on both the real and imaginary parts of equation (23). With a damped
neutraliser the real part does not cross the negative unity line and the imaginary
part no longer crosses the zero line. To overcome the problems of ambiguity and
to form a ratio (which one wishes to use as a tuning parameter) which is
insensitive to neutraliser damping, the real and imaginary parts of kf w(0)/w

0(0)
can be combined. This forms a function whose derivative with respect to
frequency is similar to the derivative of the square of the modulus of the wave
transmission ratio, which means that the function is a minimum when the device
is tuned. The sum of the real and imaginary parts (which is de®ned as the
objective function) are plotted for various damping values in Figure 6. When
there is no damping in the neutraliser, this function has a minimum value of ÿ1
when the neutraliser is tuned to completely suppress the incident propagating
wave. Even when there is damping in the neutraliser, the objective function has a
minimum when the neutraliser is tuned, provided that Z5 1. Thus, one has a
parameter that has a minimum when the neutraliser is tuned, and it is insensitive
to the mass and damping of the neutraliser.
To initially tune the neutraliser, an open-loop control algorithm can be used,

as in the case of a conventional tuned neutraliser [13]. This open-loop tuning
could, for example, tune the neutraliser to its natural frequency and then a ®ne
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Figure 6. Sum of the real and imaginary parts of equation (23) plotted as a function of non-
dimensional frequency for various values of loss factor; mn=0�1.
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closed-loop control algorithm could be used based on the objective function
discussed above. A gradient descent algorithm could be used for ®ne tuning such
as one of those described by Kuo and Morgan [14]. The proposed algorithm is
drawn as a block diagram in Figure 7. The rough tuning algorithm could be
based on a look-up table where, for a given operating frequency, the required
stiffness of the neutraliser would be known, having been previously measured
off-line. The rotation of the beam could be measured using two accelerometers
and employing ®nite-difference techniques.

4. EXPERIMENTAL WORK

To validate the approximate formulae developed in sections 1 and 2 that
describe the important properties of the device, some experimental work was
conducted. A beam-like vibration neutraliser made from an aluminium strip with
small brass masses attached, and with ®xed characteristics, was designed and
®tted to a 6 m6 6 mm6 50 mm steel beam that had sandboxes ®tted to each
end to act as anechoic terminations. The neutraliser was designed so that the
mass ratio at the tuned frequency mt would be about 0�1. The experimental set-
up is shown in Figure 8. Accelerometers were placed on the brass masses on the
neutraliser and at positions 1, 2 and 3 shown in Figure 8. Accelerometers 1 and
2 were spaced 100 mm apart and were positioned equidistant either side of the
neutraliser. An electrodynamic shaker, positioned 700 mm from one of the sand
boxes, was used to generate a dynamic force. The beam was excited with band-
limited random noise over a frequency range 100 to 500 Hz, and the frequency
response functions between the current applied to the shaker (which is
proportional to the force applied) and the accelerometers were measured.
The measured data were post-processed to give the required results. All the

results are presented in the frequency domain. The frequency response between
the applied force and accelerometers 1 and 3 with and without the neutraliser
®tted are presented in Figures 9(a) and (b), respectively. Each of the results is

Rough tuning algorithm Fine tuning algorithm
k 2

Is frequency of excitation ≈   n?

No

Acceleration of beam (2 points)
and neutraliser mass

Yes

Figure 7. Outline of control algorithm to tune a neutraliser ®tted to a beam to control propa-
gating ¯exural waves.
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normalised to the minimum acceleration measured at positions 1 and 3,
respectively, so that the attenuation at this position and frequency can be easily
distinguished.
It can be seen from Figures 9(a) and (b) that the minima in acceleration at

points 1 and 3 differ in frequency. The frequency at which the acceleration of
point 1 is a minimum occurs at the natural frequency of the neutraliser at about
189 Hz. A reduction in the motion of the beam at this frequency of about 32 dB
has been achieved by the neutraliser. At this frequency the neutraliser is
attempting to pin the beam and not block the propagating ¯exural waves.
Examination of Figure 9(b) shows that the minimum in the acceleration at point
3 occurs at about 191 Hz. This is the tuned frequency that was discussed in
section 2. The reduction in the amplitude of the propagating ¯exural wave at this
frequency is about 16 dB.
One can compare the attenuation of the ¯exural propagating waves with that

predicted in section 2 using equation (11) and the approximation given by
equation (12). It should be noted, that in order to predict the attenuation, a
measure of the damping in the neutraliser is required. This was achieved by
measuring the transmissibility across the neutraliser using accelerometer 1 and
an accelerometer ®tted to one of the neutraliser masses, and noting that the
amplitude of transmissibility at resonance is approximately equal to the loss
factor Z. This turned out to be 0�004 and the mass ratio between the neutraliser
and the mass of one wavelength of the beam at 190�25 Hz (given by equation
(6)) is 0�083. The ratio mr/Z is therefore 20�75. Referring to Figure 3 it can be
seen that for the particular arrangement used in the experimental work, the
approximation given in equation (12) is quite accurate. In fact the attenuation
achieved in the experiment was 16�56 dB and the attenuation predicted by
equations (11) and (12) were 15�83 and 14�30 dB, respectively. It should be noted
that the bandwidth of the neutraliser was only about 0�75 Hz, and that if this

0.7 m 1.5 m

6 m

2.5 m

Plan view

Side view

Excitation force

Neutraliser Sandbox

Accelerometers

1 2 3

Figure 8. Experimental set-up to test the operation and tuning criterion for a tunable vibration
neutraliser ®tted to a beam.
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was required to be increased, then in order to maintain the same attenuation in
the ¯exural waves, the mass of the neutraliser would have to be increased
proportionately.
To validate the tuning algorithm described in section 3, the following function

was formed using experimental data:

a � �w1

�w2 ÿ �w1
, �25�

where the subscripts refer to the accelerometer positions shown in Figure 8, w
denotes lateral displacement of the beam and a dot denotes differentiation with
respect to time. The real and imaginary parts of equation (25) were summed to
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Figure 9. Experimental resultsÐacceleration measurements on the beam. (a) Normalised accel-
eration at position 1 on the beam. (b) Normalised acceleration at position 3 on the beam.
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give an objective function similar to that described in section 3. The result is
plotted in Figure 10 where it can be seen that there is indeed a minimum in this
function at the frequency when the neutraliser optimally attenuates the incident
propagating wave. This ®gure should be compared with Figure 6.

5. CONCLUSIONS

This paper has described an analytical and experimental investigation into the
use of a tunable vibration neutraliser to control ¯exural waves on a beam.
Expressions have been derived which describe the frequency at which the
neutraliser should be tuned in order to suppress an incident propagating ¯exural
wave. Although there is not a simple closed-form solution for the tuned
frequency, relatively simple expressions do exist for the tuned frequency
provided that the mass of the neutraliser is either small or large compared to the
mass of one wavelength of the beam at the tuned frequency. The attenuation of
the incident propagating wave has been shown to be proportional to the ratio of
the neutraliser mass to the mass of one wavelength of the beam at the tuned
frequency, and inversely proportional to damping in the neutraliser. A simple
expression relating these quantities has been derived. As well as in¯uencing the
attenuation of the incident wave on the tuned frequency, the damping also
controls the bandwidth. It has been shown that the bandwidth of the neutraliser
with a small mass ratio is simply equal to the loss factor, but when the mass
ratio is large then the bandwidth increases by one-third. Finally a simple control
algorithm has been proposed that uses two signals from accelerometers
positioned on the beam spaced a small distance apart, either side of the
neutraliser. The control algorithm is a two-tier control system consisting of an
open-loop part which tunes the neutraliser so that its natural frequency is
coincident with the forcing frequency, and a closed-loop control algorithm that
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Figure 10. Experimental resultsÐplot of the measured objective function versus frequency.
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uses the signals from the accelerometers positioned on the beam at the base of
the neutraliser. The closed-loop control algorithm ®ne-tunes the neutraliser to
suppress the incident propagating wave. The main advantage of this system is
that it is potentially simple and compact.
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APPENDIX: THE CONTROL OF FLEXURAL WAVES ON AN INFINITE
BEAM USING A DISCONTINUITY

In this Appendix the effects of mass and spring-like discontinuities on ¯exural
wave propagation on an in®nite Euler±Bernoulli beam are discussed. Consider
an in®nite beam with a discontinuity of dynamic stiffness Kd, as shown in
Figure 1. The ratios of the transmitted and re¯ected waves to the incident wave
are given by [10]:
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At

Ai
� 4ÿ e

4ÿ eÿ je
,

Ar

Ai
� ÿe

e� j�4ÿ e� , �A1a; b�

where

e � Kd

EIk3f
: �A2�

If the dynamic stiffnesses of simple jumped parameter elements are substituted

into equation (A2), one can determine the relationship between e and frequency

for the various elements: for a mass e a ÿo1/2, for a viscous damper e a j oÿ1=2

and for a stiffness e a oÿ3=2. Examining equation (A1a) one can see that for the

transmitted wave to be set to zero requires e=4, which means that e must be

real and positive. It is clear that only a stiffness element can meet this criterion.

The variable e is a non-dimensional quantity, and for a mass-like discontinuity

relates the mass m of the discontinuity to the mass in one wavelength of the

beam. Substituting for Kd=ÿo2m into equation (A2) and setting m=ÿe gives:

m � 2p
m

rAl
� 2pm

Mass of one wavelength of the beam
: �A3�

For a mass-like discontinuity, equations (A1a, b) can therefore be written as:

At

Ai
� 4� m

4� m� jm
,

Ar

Ai
� m
ÿm� j�4� m� : �A4a; b�

The moduli of these equations are plotted in Figure A1(a). The solid lines give

the acutal values computed using equations (A4a, b) and the dotted lines give

the low and high frequency asymptotic values. It can be seen that the maximum

reduction of an incident ¯exural wave using a mass discontinuity is only 3 dB, as

reported by Mead [10]. The low frequency asymptote (small m) for the re¯ection

ratio is simply given by ÿjm/4. By setting the modulus of this to 1/
p
2, one ®nds

that the point at which the asymptotes cross is given by m=2
���
2
p

.

As discussed above it is possible to completely suppress an incident ¯exural

wave using a spring-like discontinuity. In practice, springs have some internal

damping so it is of interest to look at the effects of a discontinuity consisting of

a hysteretically damped spring of spring constant k, whose dynamic stiffness is

given by Kd= k(1+ jZ). In this case the non-dimensional parameter e consists of
real and imaginary parts and can be written as e(1+ jZ). The transmitted and

re¯ected wave ratios are thus given by:

At

Ai
� 4ÿ eÿ jZe

4ÿ e�1ÿ Z� ÿ je�1ÿ Z� ,
Ar

Ai
� ÿe�1� jZ�

e�1� Z� � j�4ÿ e� : �A5a; b�

For small damping, when Z5 1, the transmitted wave is a minimum when e1 4.

In this case the transmitted and re¯ected wave ratios are given by:
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At

Ai
1 Z

1� Z
1Z,

Ar

Ai
1 ÿ1

1� Z
: �A6a; b�

The frequency at which the transmitted wave is a minimum can be determined

setting e=4, in equation (A2) to give:

ot �
��������������

k

2

p
rAlt

vuut , �A7�

where the subscript t denotes the tuned frequency, which is the frequency at
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Figure A1. Effects of discontinuities on a propagating ¯exural wave on an in®nite Euler±Ber-
noulli beam. (a) Transmission and re¯ection ratios of ¯exural waves on a beam with a mass dis-
continuity. (b) Transmission and re¯ection ratios of ¯exural waves on a beam with a
hysteretically damped spring discontinuity. - - - - - -, Z=0�1; Ð, Z=0�01.
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which the amplitude of the transmitted wave is a minimum. Equation (A7) can
be interpreted as a natural frequency where the equivalent mass of 2/p of a
¯exural wavelength of the beam is resonating on the stiffness of the
discontinuity.
To ®nd the bandwidth of the device (de®ned as the normalised frequency

range over which the modulus of the transmitted wave is within 3 dB of the
minimum), equate the square of the modulus of equation (A5a) with twice the
square of equation (A6a). Solving this for e, and ignoring higher orders of Z
gives:

e1;2 � 424Z: �A8�
Subtracting e1 from e2 and noting that e is related to frequency by e=4(ot/o)3/2

gives:

ot

o1

� �3=2

ÿ ot

o2

� �3=2

� 2Z: �A9�

Using the approximation ax=1+x ln(a) and noting that axÿbx=
x(ln(a)ÿln(b))= x ln(a/b), equation (A9) can be written as:

o2

o1
� e4=3Z: �A10�

Subtracting 1 from both sides of equation (A10), and assuming that damping is
small such that Z5 1 and o11ot, then gives:

Do
ot
� 4

3
Z, �A11�

which is the bandwidth of a hysteretically damped spring discontinuity on a
beam.
The re¯ection and transmission coef®cients for a hysteretically damped spring

discontinuity are plotted as a function of 1/e in Figure A1(b). (1/e is used as the
independent variable rather than e so that the frequency increases from left to
right on the graph). It can be seen that the reduction of an incident ¯exural wave
using a hysteretically damped spring discontinuity is 3 dB at low frequencies (e
large). The attenuation reaches a maximum when e=4, as discussed above,
when the attenuation is then given by approximately 1/Z. This dip in the
transmission has a bandwidth of 4Z/3. At high frequencies the re¯ection ratio
asymptotically approaches je/4. It should be noted that the damping has only a
marginal effect on the transmitted and re¯ected waves at frequencies away from
the tuned frequency de®ned in equation (A7).


